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Abstract

The application of the Hodrick-Prescott (HP) and other linear filters to
remove trend and extract business cycles in macroeconomic time series
is a common practice despite its limitations, namely, in signaling reces-
sions. Median filters and other nonlinear techniques can perform better
by accommodating sharp but fundamental changes in the growth trend
and passing only the relevant information to the cycle component. An ap-
plication to the Portuguese relevant macroeconomic series confirmed the
robustness of nonlinear filters in signaling the recessions and recoveries.
In particular, the Mosheiov-Raveh (MR) filter estimates piecewise trend
growth paths that naturally date the specific periods of the Portuguese
economy since 1977.

Keywords: Time series models; Business cycles; Linear and nonlinear fil-
tering.
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1 Introduction

Many economic time series like GDP increase steadily over time. A simple way
to describe such upward trends is to consider a linear model of the data yt on a
deterministic time trend plus a noise component [7, 9, 10]:

yt = α+ δt+ εt. (1)

Processes with such representation are typically described as trend station-
ary, in the sense that if one subtracts the trend α + δt from (1), the result is
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a stationary process, that is, whose mean and autocovariances do not depend
on the date t. However, this regression technique may not be appropriate to
detrend series whose growth component is time varying, depends on other en-
dogenous or exogenous conditions, or is stochastic. In fact, macroeconomic time
series are frequently represented by the random walk plus drift model, a special
case of unit root process:

yt = yt−1 + δ + εt. (2)

Given the initial condition y0, the general solution for this difference equation
is [7]:

yt = y0 + δt+

t∑
i=1

εt. (3)

Thus, detrending a process such (2) is not sufficient to eliminate the stochas-
tic trend

∑
εt where each shock εi with i ≤ t has a permanent effect on the

mean of yt. Nevertheless, its representation in first-differences:

∆yt ≡ (1− L)yt = yt − yt−1 = δ + εt (4)

where L is the lag operator is stationary. Thus, the random walk with drift
is an example of a difference stationary model that can be transformed into a
stationary process by differencing [7].

Detrending and differencing are popular practices in macroeconometrics be-
cause the autoregressive moving average (ARMA) framework is applicable only
to stationary time series. However, both practices have several setbacks. On
one hand, the linear time trend model (1) assumes that trend is unchanging over
time with a secular growth rate δ that could not accommodate technological,
demographic and other fundamental shocks that might occur overtime. On the
other hand, the first-difference filter (4) removes the zero (long-run) frequency
and accentuates the high-frequencies in the data yt, producing a very noisy
stationary component εt [5, 10].

In practice, detrending and differencing may not be adequate to describe the
business cycle, that is, the more or less regular pattern of expansion and con-
traction in economic activity around the path of trend growth that is observed
in most macroeconomic variables. Given a seasonally adjusted time series yt,
the business cyclical component ct can be defined as

ct ≡ yt − xt − εt, t = 1, . . . , N (5)

where xt and εt are the trend (low-frequency) and irregular (high-frequency)
components of yt, respectively. Thus, the cycle ct should capture the medium-
frequencies with periods lasting no fewer than six and no more than thirty-two
quarters as defined by the National Bureau of Economic Research (NBER)
researchers [22].

In most business cycle applications, the estimation of the low-frequency com-
ponent xt is the key task, with the cycle ct being approximated by the residual
ε∗t = yt−x∗t . The trend is generally seen as a slow movement over time that could
be extracted with appropriate filtering techniques. Ideally, they should capture
not only the deterministic but also the stochastic dimension of the growth as
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described. In several cases, filtering consists in applying a smooth operator M
to a moving-centered window of the data with length l = 2k + 1 in order to
estimate the trend component

xt = M [yt−k, . . . , yt, . . . , yt+k] , t = 1, . . . , N. (6)

Linear and nonlinear techniques can be mobilized to perform this task. Mov-
ing Average (MA), that is, using the arithmetic mean as smooth operator in
equation (6) is a simple way to do it:

x̃t =
1

2k + 1

k∑
i=−k

yt+i, t = 1, . . . , N. (7)

This is an example of a Linear Time-Invariant (LTI) low-pass filter which
does not affect low frequencies, rejects high-frequencies and avoid phase shifts
through its symmetry [21]. Setting k = 11, the MA filter can be used to block
cycles with length shorter than l = 23 quarters [23]. And it can be applied once
again to the residual ε̃t = yt − x̃t to separate the pure cycle component ct from
the high-frequencies εt by fixing k = 2 (window length of 5 quarters) as in the
decomposition (5), even when the trend xt was estimated with other techniques
including the linear time trend regression (1).

A special case of moving average and linear filtering is the widely used
Hodrick-Prescott (HP) filter [13]. In this method, the trend sequence {xt} is
chosen to minimize either the sum of the squares of deviations from data series
yt or the sum of the squares of the trend’s second difference, a possible measure
of its smoothness. The benefit of the HP filter is that it can extract the same
stochastic trend from a set of variables [7].

In a recent critique, Hamilton [11] stressed that the HP filter produces ex-
tremely predictable cyclical components whose rich dynamics are purely ar-
tifacts created by the filter rather than reflecting any true dynamics of the
data-generating process itself, following an argument similar to Harvey and
Jaeger [12] that found that the HP filter may create spurious cycles and cross-
correlations between different variables. This is a common feature of linear fil-
ters including the symmetric Baxter-King (BK) [1] and asymmetric Christiano-
Fitzgerald (CF) [4] band-pass filters which tend to eliminate large fluctuations
either in expansions or contractions [23]. In fact, linear filters produce smooth
trends that might not capture fundamental sharp changes in the growth compo-
nent of the time series under study. This problem is particularly acute with the
HP method because it produces a trend with a very regular, predictable, pattern
and passes everything else to the cyclical component, including high-frequencies.

As suggested by Wen and Zeng [23], nonlinear filters could perform better
than linear filters in capturing occasional, discrete shifts in the growth dynamics
of economic series. In particular, the Median (MED) filter provides a simple
noise attenuation with robustness against impulsive-type noise and it has proved
to be effective in signaling recessions. However, it produces a very noisy trend
that might fail the test of either smoothness or persistence. The Mosheiov-Raveh
(MR) [18] alternative metric for the HP minimization problem could deal with
this problem, producing a suggestive piecewise trend.

We start by describing these different filtering techniques (MED, HP and
MR). Then, we compare the different insights in describing the business cycles
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of the Portuguese economy since 1977. One conclusion of our analysis is that
the trend and the cyclical component are both informative about economic
conditions. As framework, we dated the Portuguese contractions (recessions)
and expansions (recoveries) by applying the Bry and Boschan algorithm [2, 14]
to GDP, private consumption, investment and employment (see appendix).

2 Alternative filtering techniques

2.1 The Median (MED) filter

Linear filters implicitly assign all sharp changes in time series to shifts in non-
fundamentals, assuming away the possibility that the growth trend can also
experience sudden shifts or jumps. In fact, linear filters can only suppress
undesired parts of the signal and retain the desired information about business
cycles if and only if the noise and the signal occupy different frequency bands. In
reality, however, signals reflecting sudden but fundamental changes could share
the same frequency band with noise.

To deal with these limitation of linear filters, Wen and Zeng [23] introduced
a class of nonlinear filters, called the median filters, that has been proven useful
and powerful for removing time trend and noise in several contexts. To compute
the output of the Median (MED) filter, an odd number of sample values are
sorted, and the middle or median value is used as the trend component xt.
In practice, the MED filter adopted the median X as smooth operator M in
equation (6):

x̂t = X [yt−k, . . . , yt, . . . , yt+k] (8)

for t = 1, . . . , N and k = 11 with quarterly data. To be able to filter also the
outermost observations, where the filter window partially fall outside the input
signal, those authors [23] replicated the y1 and yN values as many times as
needed, the so-called ‘first and last values carry-on appending strategy’.1

The MED output has good deterministic and statistical properties [23].
Namely, it is optimal in the mean absolute error sense because the median
of y1, . . . , yN can be defined as the value β minimizing the following expression
when γ = 1

N∑
t=1

|yt − β|γ (9)

In fact, the sample median is the maximum likelihood estimate for the location
parameter of the Laplace probability distribution [23].

Wen and Zeng [23] compared the MED filter with length l = 2k + 1 = 23
quarters with the HP, BK and MA filters and concluded that the MED cycle
ĉt ≡ yt − x̂t for GDP coincides almost exactly with the NBER dated recessions
for the United States of America, while the linear filters are too noisy outside
contraction periods. This result indicates that linear filters are not efficient
in retaining the growth component of GDP in terms of effectively capturing
sharp changes in growth trend. Those authors also stressed that the HP and

1We follow that strategy in the application of the moving average filter (7) too.
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MA filters generate very similar trend paths which could be explained by the
moving average representation of the HP filter, as described below.

2.2 The Hodrick-Prescott (HP) filter

Let denote y = (y1, y2, . . . , yN ) as the (N × 1) vector of the seasonally adjusted
time series yt. The Hodrick-Prescott (HP) trend x∗ = (x1, x2, . . . , xN ) is chosen
to minimize either the sum of the square residuals εt = yt−xt or the smoothness
of the trend component

min

[
N∑
t=1

ε2t + λ

N∑
t=3

(gt − gt−1)
2

]
(10)

where λ > 0 is a penalty for the square of the difference of the trend growth gt ≡
xt − xt−1, which is the second difference (acceleration) of the trend component
xt. Thus, the larger the value of λ, the smoother will be the HP trend. In
particular, as λ approaches infinity, the limit of solutions to program (10) is
the least squares fit of the linear time trend model (1). If the residual εt and
the difference gt − gt−1 are uncorrelated white noise processes with means zero
and variances σ2

ε and σ2
g , then the conditional expectation of xt on data yt

would be the solution to program (10) when λ = σ2
ε/σ

2
g [6, 11, 13]. In order to

extract business cycles frequencies from quarterly data, Hodrick and Prescott
[13] propose setting this noise-to-signal ratio equal to 1600.

It is convenient to express the problem (10) in matrix form

min
[
(y − x)T (y − x) + λxTDTDx

]
(11)

where D ∈ R(N−2)×N is an upper triangular Toeplitz matrix with first row
[1 − 2 1 0 · · · 0]. As noted by Kim et al. [15], this objective function is strictly
convex in x, thus has a unique minimizer

x∗ =
(
I + λDTD

)−1
y. (12)

From the optimality condition y − x∗ = λDTDx∗, we could obtain the
optimal fitting error, that is, the cyclical component of the HP filter

c∗ ≡ y − x∗ = λDTD
(
I + λDTD

)−1
y. (13)

From the first order condition (12), the HP trend estimate is simply a moving
average of the original unfiltered data y whose weights change as we move from
the mid-sample to the end (or the begin) of the sample. As stressed by St-
Amant and van Norden [22], the HP filter produces a smooth two-sided average
at mid-sample where no observation receives more than 6 percent of the weight.
Nevertheless, at the end of sample, the last observation alone counts for 20
percent of the weight used to compute x∗N , and even at end–3 periods sample it
counts 13.5 percent for x∗N−3. Symmetrically, this problem is also observed at
the begin of the sample.

The HP filter is an example of an heuristic two-part decomposition of time
series that could be represented by a high-pass transfer function. As found by
King and Rebelo [16], the transfer function of the cycle component (13) is given
by
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H(ω;λ) =
4λ(1− cos (ω))2

1 + 4λ(1− cos (ω))2
(14)

where the frequency ω measures the number of cycles completed during 2π
periods which is unity for the cosine function. The HP transfer function is also
the gain of the filter because it assumes only real (non imaginary) values. This
result is a direct consequence of the symmetry of the HP filter and from Euler
equations (see also [10]). Thus, the HP filter is similar to a high-pass filter
where choosing different values for λ is comparable to fix different values for the
cut-off point of the filter [19].

Solving in λ the equation (14) for a gain of 0.5 as suggested by Mohr [17], we
found that the critical frequency of π/20 = 2π/40 = 0.157, which corresponds
to a period of 40 quarters (10 years), requires a value of λ ≈ 1600 as suggested
by Hodrick and Prescott [13] to filter quarterly data. Moreover, for a gain of
0.7, the critical frequency associated with λ = 1600 is approximately π/16, the
cut-off frequency of a filter that passes oscillations lasting 32 quarters (8 years)
or less. Thus, the HP cyclical component of quarterly data computed with
λ = 1600 shall have residual seasonality and other high frequencies with period
less than 6 quarters mixed with real business cycle frequencies. Applying the
MA filter (7) with k = 2 (l = 5) to the HP cycle (13) can mitigate this problem.

2.3 The Mosheiov-Raveh (MR) filter

As suggested above, the median filter output minimizes the sum of the absolute
values of the fitting residual εt = yt−xt. Thus, the MED trend x̂t is well-fitted
to the original time series yt and it is always one of the input observations from
(8). The fidelity or closeness to data is an important property of the trend but
the smoothness should also be considered. So, we could imagine a generalized
median filter which results from the following problem

min

[
N∑
t=1

|yt − xt|+ θ

N−2∑
t=1

|(xt+2 − xt+1)− (xt+1 − xt)|

]
(15)

where θ = (1 − α)/α with 0 ≤ α ≤ 1 is the weight assigned to the smoothness
criterion. If θ = 0 (α = 1) then the solution of the problem (15) is the MED
trend x̂t.

This objective function, originally proposed by Mosheiov and Raveh (MR)
[18], is a variation of the HP objetive function (10) which substitutes the sum of
squares (that is, the squared l2 Euclidean norm) for the sum of absolute values
(the l1 norm) to measure either the fidelity or the smoothness of the trend xt.
Mosheiov and Raveh suggested α = 0.1, that is, θ = 9 but a more natural
choice for quarterly data might be θ =

√
1600 = 40 = 5/(1/8), recalling that

Hodrick and Prescott [13] fixed λ = 1600 by assuming that a 5 percent cyclical
component is considered moderately large, as a one-eighth of 1 percent change
in the growth rate in a quarter.

To eliminate the absolute values in objective function (15), Mosheiov and
Raveh [18] proposed a linear programming approach with an appropriate change
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of variable

min
[∑N

t=1 (ut + vt) + θ
∑N−2
t=1 (at + bt)

]
s.t. ut − vt = yt − xt t = 1, . . . , N

at − bt = xt+2 − 2xt+1 + xt t = 1, . . . , N − 2
xt ≤ xt+1 t = 1, . . . , N − 1
ut, vt, xt ≥ 0 t = 1, . . . , N
at, bt ≥ 0 t = 1, . . . , N − 2.

(16)

The variables ut and vt have a very intuitive interpretation. They represent
either a positive or a negative cyclical position, and therefore at least one of
them has to be equal to zero. Similarly, the variables at and bt represent a sort
of regime change where the economy either accelerates to a higher trend growth
level or decelerate to a lower one. Likewise, they cannot be both positive. It is
this interesting characteristic of the optimal solution to the MR linear program
that allows this model to reveal the natural growth periods present in the data.

The problem (15) assumes monotonicity of the trend component xt. How-
ever, the Portuguese data shows a significant number of time periods with nega-
tive trend growth throughout data series. Therefore, one has to find an adequate
transformation of the original data that keeps the robust proprieties of the MR
filter while allowing the data to reveal both negative or positive trend growth.

So, we propose the following transformation of the original data yt:

y′t = yt + ϑ(t− 1), t = 1, . . . , N, (17)

where ϑ > 0 is the symmetric of the lower bound of the growth trend gt when
it is negative.2 Thus, the MR linear program becomes

min
[∑N

t=1 (u′t + v′t) + θ
∑N−2
t=1 (a′t + b′t)

]
s.t. u′t − v′t = y′t − x′t t = 1, . . . , N

a′t − b′t = x′t+2 − 2x′t+1 + x′t t = 1, . . . , N − 2
x′t ≤ x′t+1 t = 1, . . . , N − 1
u′t, v

′
t, x
′
t ≥ 0 t = 1, . . . , N

a′t, b
′
t ≥ 0 t = 1, . . . , N − 2.

(18)

One now can reconstruct the MR trend for the original data using the esti-
mated values of x′t in the following way:

ˆ̂xt = x′t − ϑ(t− 1), t = 1, . . . , N. (19)

The transformation (17) of the data series is invariant in the following sense:
given a data series yt and a smooth parameter θ, if the solution of the program
(16) provides xt+1 − xt that are all strictly positive, than the solution to the
program (18) yields the same estimate of the trend after applying equation (19).

That is, ˆ̂xt = xt for all t. Therefore, the proposed transformation is invariant for
all series with a positive trend. When the non-negative condition on program

2We used as this bound the lowest observed trend growth given by the HP filter (12) for
the relevant series. For Portuguese GDP, the assumed ϑ parameter is 0.33.
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(16) is binding, the solution ˆ̂xt is obviously different. But that is exactly the
purpose of the transformation, allowing for a non-monotone trend series which
can be represented by periods with positive or negative trend growth.

With this additional procedure, the MR filter produces good estimates, in-
cluding a possible negative trend growth. It also preserves the good properties
of the MED filter with a trend estimate that is smooth in the sense of being
piecewise linear [15]. In addition, the MR filter does not use fixed weights or
coefficients as HP or MA filters.

2.4 Filter proprieties

The reason for the popularity of the HP filter among practitioners rests on a few
properties. First, it smooths the data. That is common to all filters, except the
linear filter that smooths the data too much. Second, it allows for an estimate
of the trend growth. Once again, this is common feature to all statistical filters.
Third, it provides an estimate of the cyclical position of an economy in every
quarter or year. This is also common to all filters, even though the linear
filter accepts too large cyclical components, and the HP and the other filters
may underestimate the cyclical component. This is one important advantage of
nonlinear filters, providing a potentially better measure of the cyclical position
and as such a measure of the slack or overheating of the economy. Fourth,
the key distinctive feature of the HP filter is that it allows trend growth to be
different in every time period. In this perspective, the HP filter is the simplest
statistical method that assumes non-constant GDP growth. Moreover, it allows
this growth to follow the data, even though in much smoother form than actual
observed growth.

The MR filter also has this fitting property, in contrast with other statis-
tical techniques that either force a constant GDP trend growth, or model this
growth as a function of other covariates, or even allowing it to vary according to
predefined periods. Of course, some of the limitations of the HP filter are well
known, especially its bias near the end of the sample period, which can severely
affect the estimates of trend growth and cyclical component. This bias can be
serious and therefore most researchers treat with great care the estimates of
GDP trend growth and cyclical position near the end, usually the present, of
the available data.

The most interesting feature of the MR filter when compared with the HP
filter is that it provides a more robust estimate of the trend growth, only chang-
ing this estimate if the signal coming from the data is sufficiently strong. Thus,
the MR filter could delay the recognition of a change in regime, but it would be
robust in signaling a new trend once sufficient evidence is present in the data.

3 Main findings

The five statistical methods presented above to separate the data into trend,
cyclical and error components were applied to the quarterly real (chain linked)
national accounts of GDP, private consumption, gross fixed capital formation
(GFCF) and employment level provided by the Portuguese National Statistics
Office (INE) since the first quarter of 1995 till the fourth quarter of 2016. This
seasonally adjusted data was complemented with long-term series from Banco
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de Portugal (BdP) to produce a set of 160 observations since the first quarter
of 1977. Moreover, a procedure described in the appendix was used to date the
Portuguese recessions by tracking the peaks and troughs in the various series.

In figure 1, we show the trend component of GDP according to the five
methods. The linear time model provides substantially different results from the
other four. Notice how recessions tend to slow growth in all other four methods.
Moreover, notice how the four methods, bar linear trend, show a declining trend
GDP since 2008, which coincides roughly with the Great Recession 2007-2009.

Notes: the Median trend was smoothed with a centered moving average of 5 quarters
(k = 2) and the shaded regions denote the recession dates in table 4 (appendix).

Figure 1: Trend component of 100 times the log of GDP computed with the
linear time model (blue), Moving Average (black), Median (black dashed),
Hodrick-Prescott (red) and Mosheiov-Raveh (red dashed) filters (Portugal,
1977Q1-2016Q4)

In figure 2, we plot the trend GDP growth, which brings more or less cyclical
patterns accordingly with the model. What is most striking, however, is that
after 2000 the declining estimate of GDP growth never returned to the highest
values observed around the previous peaks. Moreover, trend GDP growth was
smaller than the constant estimated by the linear time model from 2000 on. The
private consumption, investment and employment follow similar patterns (see
additional figures in annex). It is striking that the general shape of alternation
between trend growth levels is quite similar across statistical methods, except
the constant linear model.

The behavior of investment is worth an additional note. According to most
models, investment trend growth was negative between 2001 and 2014. More-
over, figure 3 shows how far from the levels observed in 2002 are the fixed
investment nowadays. This is a good measure for the severity of slowdown in
investment observed for close to 16 years (from 2002 to the present), a much
extended period indeed.

An immediate approach is to interpret the different trend growth levels as
different natural periods of the Portuguese economy. We do it in table 1, which
proved to be a complement of the recessions dated in table 4 (appendix). While
all filtering techniques (moving average, median filter, HP and MR) provide
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Note: the shaded regions denote the recession dates in table 4 (appendix).

Figure 2: First difference of the trend component of 100 times the log of GDP
computed with the linear time model (blue), Moving Average (black), Median
(black dashed), Hodrick-Prescott (red) and Mosheiov-Raveh (red dashed) filters
(Portugal, 1977Q1-2016Q4)

Notes: the Median trend was smoothed with a centered moving average of 5 quarters
(k = 2) and the shaded regions denote the recession dates in table 4 (appendix).

Figure 3: Trend component of 100 times the log of GFCF computed with the
linear time model (blue), Moving Average (black), Median (black dashed),
Hodrick-Prescott (red) and Mosheiov-Raveh (red dashed) filters (Portugal,
1977Q1-2016Q4)

10



similar estimates for GDP trend growth that highlight different periods, the
MR filter provides this dating in a very natural fashion. Thus, we identify eight
distinctive periods for the evolution of the Portuguese economy since 1977:

Period GDP Consumption GFCF Employment
1 1980Q3 1981Q3 - 1980Q2
2 1985Q4 1985Q4 1985Q3 1986Q2
3 1991Q1 1991Q4 1990Q4 1991Q1
4 1995Q3 1996Q3 1995Q1 1995Q4
5 2000Q3 2000Q4 1999Q4 2001Q2
6 2008Q1 2008Q1 2008Q4 2008Q2
7 2013Q4 2013Q4 2013Q3 2013Q4
8 tbd tbd tbd tbd

tbd: to be determined.

Table 1: Portuguese economic periods as determined by the MR filter (end
quarter)

The first period, ending in late 1980, represents a strong expansionary period
(average growth of 1.4% per quarter). It was followed by a period of low growth
(average growth of 0.3%) which ends in late 1985 and includes a short recession.
The third period is again strongly expansionary (average quarterly growth of
1.4%) until 1991. The fourth period, which includes a small recession at the
beginning, has a low growth but around the overall average of 0.6% quarter over
quarter change, given by the linear time trend model.

Therefore, the MR filter appears to capture a broad concept of strong growth
and low patch with a similar interpretation that is often used to characterize
expansions and contractions. However, the remaining four periods show a very
different alternation of trend growth. The apparent strong growth in period 5
(1.0% per quarter) is moderate by historical standards, but is still the strongest
of the following three periods. The sixth period (average growth of 0.2%) is
unusually long (seven years), but it was not followed by a period of strong
growth. In effect, trend GDP growth becomes negative in period 7 (-0.2%
per quarter) and includes two recessions. So it can be classified as a period
with a double dip recession. This is the period with the weakest growth of the
Portuguese economic history after 1974. The current period 8 started in late
2013 (average trend growth of 0.1%) which can be considered as an expansionary
period, but much weaker that all others on record.

These eight periods are visible on series other than GDP. In some series,
two periods might be considered as one single period (e.g. the first and second
periods for investment, see table 1). Moreover, the exact beginning of the strong
and the weak spots are not necessarily estimated to begin and end on the same
quarter by all data series analyzed. However, they tell the same story from a
qualitative point of view.

This description of the results shows the great power of the MR filter to
identify natural periods of differential growth on the data series. These periods
show up quite naturally, and the weak periods usually include one or two reces-
sions. So, the MR filter can be used to that purpose. This type of classification
is useful for policy since weak periods of growth should recommend fiscal stim-
ulus and strong periods of growth should counsel additional debt repayments
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and savings.
One can argue that HP filter provides a similar story. However, the beginning

and ending of the periods is less obvious (associated with inflexion points in
figure 2), and the HP trend growth must be averaged to characterize each period
directly signaled by the MR filter.

The five methods might provide very different estimates of the trend GDP
growth. Using the last quarter of the data, the range of this growth is between
0.01% for the MR filter and 0.63% for the MED filter. Models using Box-
Jenkins type procedures with the entire data set will tend to anchor medium
term predictions around 0.6% change per quarter, plus eventually some short-
term cyclical recovery. Nevertheless, the MR filter is quite conservative due to
its robust estimation properties: changes of its estimated trend growth require
stronger signals from data than pure noise or cyclical recovery.

Note that the linear model generates an extremely different pattern for the
cyclical component, because it assumes a constant trend growth (see figure 4).
The other filters generate fairly similar cycles except near the begin and end
points of the sample.

Notes: the cycles were smoothed with a centered moving average of 5 quarters
(k = 2) and the shaded regions denote the recession dates in table 4 (appendix).

Figure 4: Cyclical component of 100 times the log of GDP computed with
the linear time model (blue), Moving Average (black), Median (black dashed),
Hodrick-Prescott (red) and Mosheiov-Raveh (red dashed) filters (Portugal,
1977Q1-2016Q4)

A remarkable feature of the nonlinear filtering techniques is that they pro-
duce cycle components less volatile than the difference between the original data
and the HP trend, a suggested by the table 2. This result is particularly evident
for the median filter and it is a direct consequence of the ability of nonlinear
filters to capture sharp swifts in the trend growth. Thus, the cyclical compo-
nents associated with nonlinear filters (including MR) are less contaminated
with noise and changes other than pure cyclical effects. As already illustrated
by the figure 4 for GDP, the cyclical components of the MED filter coincides
almost exactly with the recessions dated in table 4 (appendix) with the Bry and
Boschan algorithm [2, 14] which is a direct consequence of that characteristic
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of nonlinear filtering in general. Nevertheless, the MR filter realizes a cycle
component that is more comparable with the HP cycle than MED cycle.

Component Linear MA MED HP MR
GDP 9.84 1.78 0.89 1.65 1.44
Private consumption 11.87 2.21 1.08 2.04 1.94
Investment (GFCF) 23.08 5.74 4.21 5.61 6.67
Employment 4.84 1.18 0.80 1.15 0.90

Table 2: Standard deviation of the cyclical component of the Portuguese quar-
terly real GDP, private consumption, GFCF and employment computed with
the linear time model, Moving Average (MA), Median (MED) Hodrick-Prescott
(HP) and Mosheiov-Raveh (MR) filters

4 Conclusion

Accessing economic conditions overtime requires separating trend, cyclical and
noise components from time series. This task is often model dependent. Simple
detrending models assumes a secular trend that is fixed over time, thus all shocks
are described as cyclical or temporary within that kind of framework. However,
technology and other fundamentals will likely change trend growth overtime. So,
the trend of an economy can be better described as a slow changing movement
over time rather than a fixed drift. The Hodrick-Prescott [13] filter is very
popular in part because it can estimate that kind of non-constant but smooth
trend growth, producing insightful business cycles.

However, the HP and other linear filtering techniques generate trends with
regular and predictable patterns that pass everything else to the stationary com-
ponent, including high-frequencies and shocks other than pure cyclical effects.
In practice, they produce ‘artificial’ trend-cycle decompositions that might not
reflect the data-generating processes.

Robust nonlinear filters could perform better than linear filters in capturing
discrete shifts in the trend growth of economic series. For example, the median
filter provides noise-attenuation and it has been effective in signaling recessions.
Nevertheless, its trend is noisy even when averaged across adjacent time periods.
We found that the method proposed by Mosheiov and Raveh [18] keeps the
robust statistical proprieties of the median filter, while generating stable trend
growth estimates lend themselves to insightful interpretations of the different
time periods of an economy.

The distinctive feature of the MR filter is the piecewise nature of its trend
growth. This unique characteristic might be useful to estimate the trend growth
of the economy and to highlight natural periods of differential growth on the
data series. In fact, the MR filter is conceptually similar to HP filter but uses
robust statistics anchored on the median and absolutes deviations of the data.
Thus, the MR filter provides a more robust estimate of the trend growth, only
changing this estimate if the signal coming from the data is sufficiently strong.
Additionally, it provides potentially better measure of the cyclical position and
as such a measure of the slack or overheating of the economy.

With the help of the MR filter, we found eight distinctive periods for the evo-
lution of the Portuguese economy since 1977. These periods show up quite nat-

13



urally, and the weak periods might include one or two recessions for some vari-
ables such investment or employment. In particular, the sixth period (2000Q4-
2008Q1) was unusually long, has a moderate average trend GDP growth of only
0.2% per quarter, and it was not followed by a period of strong growth yet.
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Appendix: Dating the Portuguese recessions

A recession may be defined as a significant decline in the level of economic
activity, not confined to one sector but spread across the economy, usually visible
in two or more consecutive quarters of negative growth of GDP, employment
and other measures of aggregate economic activity [3]. Thus, a recession starts
right after the economy reaches a peak and deems to end when growth resumes
in GDP and other key measures of economic activity, that is, after a trough,
when starts the recovery till the next peak.

In most applications, peaks and troughs were tracked using the well-known
Bry and Boschan [2] dating algorithm that roughly identified the same business
cycle reference dates of the National Bureau of Economic Research (NBER) for
the United States of America [8]. In this framework, a peak occurred in quarter
t for a previously smoothed variable y if

yt−2, yt−1 ≤ yt ≥ yt+1, yt+2. (20)

Similarly, a trough occurred in quarter t if

yt−2, yt−1 ≥ yt ≤ yt+1, yt+2. (21)

For quarterly data, the minimum peak-to-trough (trough-to-peak) period is
two quarters and peak-to-peak (trough-to-trough) is six quarters.

Here, we applied the MatLab implementation of the Bry and Boschan algo-
rithm developed by Robert Inklaar [14] to the macroeconomic variables that
the Euro Area Business Cycle Dating Committee from the Centre for Economic
Policy Research (CEPR) had used to fix those turning points for the euro-area:
GDP (chain linked volumes), household and other private final consumption
expenditure (chain linked volumes), investment (gross fixed capital formation -
GFCF, chain linked volumes) and employment (number of persons) [3].

Turning points GDP Consumption GFCF Employment
Peak (P) 1983Q1 1982Q2 1982Q1 1982Q2
Trough (T) 1984Q1 1985Q1 1985Q2 1983Q2
Peak (P) 1992Q2 - 1992Q1 1992Q1
Trough (T) 1993Q2 - 1993Q4 1993Q3
Peak (P) 2002Q1 2002Q1 2001Q4 2002Q2
Trough (T) 2003Q2 2003Q2 2003Q4 2005Q3
Peak (P) 2008Q1 2008Q1 2008Q1 2008Q2
Trough (T) 2009Q1 2009Q2 - -
Peak (P) 2010Q3 2010Q4 - -
Trough (T) 2012Q4 2013Q1 2013Q1 2013Q1

Table 3: Business cycle reference dates (peaks and troughs) based on quar-
terly real GDP, private consumption, investment (GFCF) and employment in
Portugal since 1977

A total of five peaks was dated for the Portuguese GDP since 1977Q1:
1983Q1, 1992Q2, 2002Q1, 2008Q1 and 2010Q3 (see table 3). In two of theses
cases (2002Q1 and 2008Q1), peaks were observed also in private consumption
expenditure. Typically, investment peaks occurred before GDP local maxima
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such as in 1982Q1, 1992Q1 and 2001Q4, suggesting that changes in GFCF could
signal the turning points of the product with a lag of at least one quarter. The
employment followed a less predictable pattern in the sense that peaks can hap-
pen either before (1982Q2, 1992Q1) or after (2002Q2, 2008Q2) GDP high-levels.

Dating troughs is a tricky task because low-levels were more sparse within
the variables of interest. For example, the 1993Q2 GDP trough was observed
with one and two quarters of delay in employment and GFCF, respectively,
and it was not tracked by the algorithm [14] for private consumption. Thus,
the process of dating a trough might be delayed in order to assure a broadly
consistent end of recession. In most cases, the date of the GDP trough sounds
well to fix that end, but this might not be true for 2012Q4 (see table 4). In
this particular, severe recession, the trough was fixed with one quarter of delay
(2013Q1) from GDP local minimum in order to accommodate the low-levels
observed in the other variables subsequently. The pertinence of this delaying
was confirmed by a dating exercise with the monthly coincident indicator for
the Portuguese economic activity [20].

Recession Peak Trough Duration Depth (*) Output loss
I 1983Q1 1984Q1 4 -4.1% -2.3%
II 1992Q2 1993Q2 4 -2.2% -1.5%
III 2002Q1 2003Q2 5 -2.2% -2.4%
IV 2008Q1 2009Q1 4 -1.8% -4.4%
V 2010Q3 2013Q1 10 -3.5% -8.4%

(*) Minimum output gap during or after each recession, computed with the HP filter.

Table 4: Recessions in Portugal since 1977

Another interesting feature of the dating exercise described in the previous
tables is that troughs are not observed around 2009Q1 for investment and em-
ployment. Thus, the recessions IV and V might be considered as an unique
contraction episode that lasted between 2008Q2 and 2013Q1.
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A Robust Estimation of the Portuguese Real Business Cycles 

 

Annex: additional figures 

 

Figure A.1 – Trend component of 100 times the log of private consumption computed with 

the linear time model (blue), Moving Average (black), Median (black dashed), Hodrick-

Prescott (red) and Mosheiov-Raveh (red dashed) filters (Portugal, 1977Q1-2016Q4) 

 

Notes: the Median trend was smoothed with a centered moving average of 5 quarters (k = 2) and the 

shaded regions denote the recession dates in table 4. 

 

Figure A.2 – First difference of the trend component of 100 times the log of private 

consumption computed with the linear time model (blue), Moving Average (black), Median 

(black dashed), Hodrick-Prescott (red) and Mosheiov-Raveh (red dashed) filters (Portugal, 

1977Q1-2016Q4) 

 

Note: the shaded regions denote the recession dates in table 4. 
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Figure A.3 – First difference of the trend component of 100 times the log of GFCF computed 

with the linear time model (blue), Moving Average (black), Median (black dashed), Hodrick-

Prescott (red) and Mosheiov-Raveh (red dashed) filters (Portugal, 1977Q1-2016Q4) 

 

Note: the shaded regions denote the recession dates in table 4. 

 

 

Figure A.4 – Trend component of 100 times the log of employment computed with the linear 

time model (blue), Moving Average (black), Median (black dashed), Hodrick-Prescott (red) 

and Mosheiov-Raveh (red dashed) filters (Portugal, 1977Q1-2016Q4) 

 

Notes: the Median trend was smoothed with a centered moving average of 5 quarters (k = 2) and the 

shaded regions denote the recession dates in table 4. 
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Figure A.5 – First difference of the trend component of 100 times the log of employment 

computed with the linear time model (blue), Moving Average (black), Median (black 

dashed), Hodrick-Prescott (red) and Mosheiov-Raveh (red dashed) filters (Portugal, 1977Q1-

2016Q4) 

 

Note: the shaded regions denote the recession dates in table 4. 

 

 

Figure A.6 – Cyclical component of 100 times the log of GDP computed with the Moving 

Average (black), Median (black dashed), Hodrick-Prescott (red) and Mosheiov-Raveh (red 

dashed) filters (Portugal, 1977Q1-2016Q4) 

 

Notes: the cycles were smoothed with a centered moving average of 5 quarters (k = 2) and the shaded 

regions denote the recession dates in table 4. 
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Figure A.7 – Cyclical component of 100 times the log of private consumption computed with 

the linear time model (blue), Moving Average (black), Median (black dashed), Hodrick-

Prescott (red) and Mosheiov-Raveh (red dashed) filters (Portugal, 1977Q1-2016Q4) 

 

Notes: the cycles were smoothed with a centered moving average of 5 quarters (k = 2) and the shaded 

regions denote the recession dates in table 4. 

 

 

Figure A.8 – Cyclical component of 100 times the log of private consumption computed with 

the Moving Average (black), Median (black dashed), Hodrick-Prescott (red) and Mosheiov-

Raveh (red dashed) filters (Portugal, 1977Q1-2016Q4) 

 

Notes: the cycles were smoothed with a centered moving average of 5 quarters (k = 2) and the shaded 

regions denote the recession dates in table 4. 
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Figure A.9 – Cyclical component of 100 times the log of GFCF computed with the linear 

time model (blue), Moving Average (black), Median (black dashed), Hodrick-Prescott (red) 

and Mosheiov-Raveh (red dashed) filters (Portugal, 1977Q1-2016Q4) 

 

Notes: the cycles were smoothed with a centered moving average of 5 quarters (k = 2) and the shaded 

regions denote the recession dates in table 4. 

 

 

Figure A.10 – Cyclical component of 100 times the log of GFCF computed with the Moving 

Average (black), Median (black dashed), Hodrick-Prescott (red) and Mosheiov-Raveh (red 

dashed) filters (Portugal, 1977Q1-2016Q4) 

 

Notes: the cycles were smoothed with a centered moving average of 5 quarters (k = 2) and the shaded 

regions denote the recession dates in table 4. 
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Figure A.11 – Cyclical component of 100 times the log of employment computed with the 

linear time model (blue), Moving Average (black), Median (black dashed), Hodrick-Prescott 

(red) and Mosheiov-Raveh (red dashed) filters (Portugal, 1977Q1-2016Q4) 

 

Notes: the cycles were smoothed with a centered moving average of 5 quarters (k = 2) and the shaded 

regions denote the recession dates in table 4. 

 

 

Figure A.12 – Cyclical component of 100 times the log of employment computed with the 

Moving Average (black), Median (black dashed), Hodrick-Prescott (red) and Mosheiov-

Raveh (red dashed) filters (Portugal, 1977Q1-2016Q4) 

 

Notes: the cycles were smoothed with a centered moving average of 5 quarters (k = 2) and the shaded 

regions denote the recession dates in table 4. 
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